Events

  • 2023
  • Past events
  • X Jornada Complexitat.cat

    Description

    X

  • 2022
  • IX Jornada Complexitat.cat

    Description

    IX

    Organizers
    IN3-UOC

  • 2021
  • Seminar: Reducing the stress on intensive care by optimally load balancing patients in the era of COVID-19

    Speaker
    Lucas Lacasa (Queen Mary University of London)

    Description

    As the number of cases of COVID-19 continues to grow, local health services across different countries are at risk of being overwhelmed with patients requiring intensive care. At the same time, surges and demand are not homogeneous across a country, as different regions see incidence grow or decline in an asynchronous way. This enables the possibility of balancing demand by sharing patients. In this talk I will describe a proposal that we put forward in late March 2020 during the first wave of COVID-19, which computes quasi-optimal re-routing strategies to either transfer patients requiring Intensive Care Units (ICU) or ventilators, constrained by feasibility of transfer. The method is general and applicable regionally or at a national level. I will give the details of the method and showcase it with realistic data from the United Kingdom and Spain. Depending on different ICU demand profiles, up to 1000 patients (per algorithm step) which would otherwise not receive care could be re-allocated without the needs of increasing capacity of the hospitals. I will also briefly discuss our experience in going from the scientific idea to the operationalised platform.

    Link to paper

  • 2020
  • Seminar: The economic impact of the COVID-19 pandemic: A non-equilibrium network model

    Speaker
    Maria del Rio-Chanona (University of Oxford)

    Description

    We develop a non-equilibrium production network model for predicting the economic impact of the COVID-19 pandemic. In the first part of this work, we made quantitative predictions of first-order supply and demand shocks for the U.S. economy associated with the COVID-19 pandemic at the level of individual occupations and industries. To analyze the supply shock, we classify industries as essential or non-essential and construct a Remote Labor Index, which measures the ability of different occupations to work from home. Demand shocks are based on a study of the likely effect of a severe influenza epidemic developed by the US Congressional Budget Office. Compared to the pre-COVID period, these shocks would threaten around 20% of the US economy’s GDP, jeopardise 23% of jobs and reduce total wage income by 16%. We then design an economic model to address the unique features of the COVID-19 pandemic. Our model also includes a production function that distinguishes between critical and non-critical inputs, inventory dynamics, and feedback between unemployment and consumption. We demonstrate that economic outcomes are very sensitive to the choice of the production function, show how supply constraints cause strong network effects, and find some counter-intuitive effects, such as that reopening only a few industries can actually lower aggregate output. Our results suggest that there may be a reasonable compromise that yields a relatively small increase in R0 and delivers a substantial boost in economic output. This corresponds to a situation in which all non-consumer facing industries reopen, schools are open only for workers who need childcare, and everyone who can work from home continues to work from home.

    Link to the webinar

     

  • Seminar: Dynamics of T-cell memory formation and reactivation after COVID-19

    Speaker
    Aleksandra Walczak (ENS, Paris)

    Description

    The immune repertoire responds to a wide variety of pathogenic threats. Immune repertoire sequencing experiments give us insight into the composition of these repertoires. Since the functioning of the repertoire relies on statistical properties, statistical analysis is needed to identify responding clones. Using such methods I will describe the repertoire level response to the SARS-CoV-2, among other perturbations. More generally, I will show how immune repertoires provide a unique fingerprint reflecting the immune history of individuals, with potential applications in precision medicine.

    Link to the webinar